

Chapter 7: Searching for Illicit Discharge Problems in the Field

Purpose: This program component consists of detective work, and involves rapid field screening of outfalls in priority subwatersheds followed by indicator monitoring at suspect outfalls to characterize flow types and trace sources.

Method(s): The primary field screening tool is the Outfall Reconnaissance Inventory (ORI), which is used to find illicit discharge problems and develop a systematic outfall inventory and map of the MS4. The ORI is frequently supplemented with more intensive indicator monitoring methods to test suspect outfalls. A wide range of monitoring methods can be used; this chapter describes a framework for choosing the safest, most accurate and repeatable methods for a community.

Desired Product or Outcome(s): The search for illicit discharge problems yields several important management products, including:

- An updated map of the locations of all outfalls within the MS4
- Incorporation of ORI data into the outfall inventory/tracking system
- Design and implementation of an indicator monitoring strategy to test suspect outfalls
- Creation of a local chemical "fingerprint" library of pollutant concentrations for various discharge flow types
- Data reports that evaluate the significance and distribution of illicit discharge problems in the community

Budget and/or Staff Resources Required: Field screening and indicator monitoring can consume substantial staff and budget resources. Monitoring costs are closely related to the number of outfalls screened and the complexity of illicit discharge problems discovered. An MS4 that screens 10 stream miles and analyzes 80 indicator samples each year can expect to spend about \$15,000 to \$35,000. Consequently, choosing which indicator(s) to use in a community (and when and where to use them) ranks as one of the most important budget decisions for any project manager.

Integration with Other Programs: Program managers should explore two strategies to integrate field screening and indicator monitoring with other programs to achieve cost savings. The first strategy links outfall screening to broader stream corridor assessments that support local watershed restoration efforts. Often, watershed organizations and "stream waders" can be enlisted and trained to conduct outfall screening. The second strategy is to find a local agency partner to conduct laboratory analysis (such as a drinking water or wastewater treatment plant).

7.1 Overview of Searching for Illicit Discharge Problems in the Field

This chapter provides basic information about the field and laboratory strategies needed to detect illicit discharges, beginning with a field screening technique designed to gather basic information and identify highly suspect outfalls or obvious discharges. Next, it provides a basic framework for using the data from this screening to address obvious discharges, develop a chemical monitoring program, and make future program decisions. Finally, it summarizes the basic options for conducting an ongoing chemical monitoring program. The approaches outlined here are only summarized briefly, and primarily in the context of overall program management. Much more detailed and "hands-on" information is provided in Chapters 11 and 12 that provide specific methods and technical guidance for field crew and laboratory staff.

7.2 The Outfall Reconnaissance Inventory (ORI)

The field screening technique recommended for an IDDE program is the Outfall Reconnaissance Inventory or ORI. The ORI is a stream walk designed to inventory and measure storm drain outfalls, and find and correct continuous and intermittent discharges without in-depth laboratory analysis (Figure 10). The ORI should be completed for every stream mile or open channel within the community during the first permit cycle, starting with priority subwatersheds identified in the desktop analysis. Outfall screening requires relatively little expertise, and can be incorporated into other stream assessments such as the Unified Stream Assessment (Kitchell and Schueler, 2004).

The ORI can discover obvious discharges that are indicated by flowing outfalls with very high turbidity, strong odors and colors, or an "off the chart" value on a simple field test strip. When obvious discharges are found, field crews should immediately track down and remove the source (see Chapters 8 and 13). In other instances, ORI crews may encounter a transitory discharge, such as a liquid or oil spill that should be immediately referred to the appropriate agency for cleanup (Figure 11).

Figure 10: Measuring an outfall as part of the ORI

Figure 11: Some discharges are immediately obvious

The ORI is not meant to be a "one size fits all" method, and should be adapted to suit the unique needs of each community. Program managers should also modify the ORI over time to reflect field observations, crew experience, new or modified indicators, and any other innovations that make fieldwork easier or faster. Table 20 summarizes the four basic steps to conduct an ORI, and more detail on ORI protocols is provided in Chapter 11.

7.3 Interpreting ORI Data

Once the first few ORI surveys are conducted, data can be analyzed to confirm and update the desktop analysis originally used for targeting subwatersheds. The ORI data analysis follows four basic steps, which are described in Table 21. Ideally, ORI data should be stored within a continuously-updated geospatial tracking system.

Table 20: Field Screening for an IDDE Program		
Step	Strategies	
Step 1. Acquire necessary mapping, equipment and staff	 Use basic street maps or detailed maps from initial assessment Minimal field equipment required; use a portable spectrophotometer if desired Two staff per crew with basic field training required; more specialized staff or training is optional 	
Step 2. Determine when to conduct field screening	 During dry season and leaf off conditions After a dry period of at least 48 hours Low groundwater levels 	
Step 3. Identify where to conduct field screening (based on desktop assessment)	 Minimal: integrate field screening with broader watershed or stream assessments Clustered: screen drainage areas ranking High and Medium first for illicit discharge potential Severe: screen all outfalls systematically 	
Step 4. Conduct field screening	 Mark and photograph all outfalls Record outfall characteristics Simple monitoring at flowing outfalls Take flow sample at outfalls with likely problems Deal with major problems immediately 	

Table 21: Field Data Analysis for an IDDE Program		
Step	Considerations	
Step 1. Compile data from the ORI	 Compile GPS data and photographs of outfall locations Enter ORI data into database Send any samples for lab analysis 	
Step 2. Develop ORI designation for outfalls	Use ORI data to designate outfalls as having obvious, suspect, potential, or unlikely discharge potential	
Step 3. Characterize the extent of illicit discharge problems	 Use data from initial assessment Use outfall designation data Update initial assessment of illicit discharge problems as minimal, clustered, severe 	
Step 4. Develop a monitoring strategy	 At a minimum, sample 10% of flowing outfalls per year Repeat field screening in second permit cycle Use various monitoring methods depending on outfall designation and subwatershed characteristics 	

7.4 Design and Implementation of an Indicator Monitoring Strategy

The next step is to design an indicator monitoring program to test suspect or problem outfalls to confirm whether they are actually an illicit discharge, and determine the type of flow. From a program management standpoint, six core issues need to be considered during the design of the monitoring strategy, as shown in Table 22.

The indicator monitoring strategy should be concentrated primarily on continuous and intermittent discharges, and can be adapted to isolate the specific flow type found in a discharge. Figure 12 presents an overall monitoring design framework that organizes some of the key indicators and monitoring techniques that may be needed. In general, different indicators and monitoring methods are used depending on whether flow is present at an outfall or not. The details of the discharge monitoring framework are described in Chapter 12. The basic framework should be adapted to reflect the

unique discharge problems and analytical capabilities of individual communities.

Some of the recommended monitoring strategies are discussed below. The preferred method to test flowing outfalls is the **flow chart method** that uses a small set of indicator parameters to determine whether a discharge is clean or dirty, and predicts its or flow type (Pitt, 2004). The flow chart method is particularly suited to distinguish sewage and washwater flow types. Industrial sites may require special testing, and the **benchmark concentrations method** includes several supplemental indicators to distinguish industrial sources.

Table 22: Indicator Monitoring Considerations

- Use ORI data to prioritize problem outfalls or drainage areas
- Select the type of indicators needed for your discharge problems
- Decide whether to use in-house or contract lab analytical services
- Consider the techniques to detect intermittent discharges
- Develop a chemical library of concentrations for various flow types
- Estimate staff time, and costs for equipment and disposable supplies

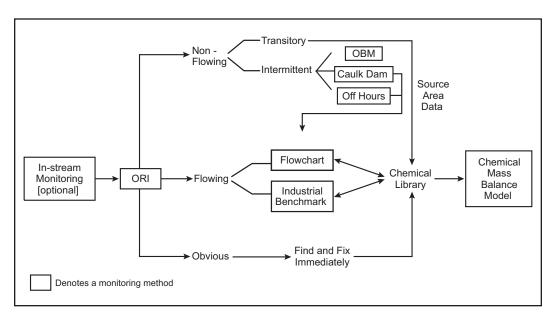


Figure 12: IDDE Monitoring Framework

Non-flowing outfalls are more challenging to diagnose. Intermittent flows can be diagnosed using specialized monitoring techniques such as:

- Off hours monitoring
- Caulk dams
- Optical brightener monitoring traps

When intermittent discharges are captured by these specialized techniques, samples are normally diagnosed using the flow chart method.

Transitory discharges are extremely difficult to detect with routine indicator monitoring, and are frequently identified from hotline reports. Transitory discharges are usually diagnosed by inspection, although water quality samples may be collected to support enforcement measures.

As communities acquire more monitoring data, they should consider creating a chemical "fingerprint" library, which is a database of the chemical make-up of the many different flow types in the community. Chemical libraries should include sewage, septage, washwater, and common industrial flows. Default values for the chemical library can initially be established based on existing research and literature values. Data are then updated based on local monitoring to develop more accurate decision points in the flow chart or benchmark methods. Clean water sources such as tap water, groundwater, spring water, and irrigation water are also important entries in the chemical library. The chemical library should also characterize the water quality of known or unknown transitory discharges sampled in the field. Over time, chemical library data should help a community better understand the potential pollutant loads delivered to receiving waters from various generating activities.

These library data can be used to support more advanced strategies such as the **Chemical Mass Balance Model (CMBM)** method. This method, developed by the University of Alabama as part of this project (Karri, 2004), is particularly useful in identifying flow types in blended discharges, where groundwater or tap water is diluted or commingled with sewage and other illicit discharges. The CMBM requires substantial upfront work to develop an accurate chemical library for local flow types. Specifically, the library requires 10-12 samples for each flow type (for industrial flow types, samples can be obtained in association with NPDES pretreatment programs). A user's guide for the CMBM can be found in Appendix I.

Section 7.5 Field and Lab Safety Considerations

Program managers should take into account and fully plan for all necessary field and laboratory safety precautions. Most communities already have well established standard operating procedures they follow

when conducting field and lab work, and these typically provide an excellent starting point for IDDE programs. Chapters 11, 12, and 13 along with Appendices F and G provide guidance on specific considerations associated with IDDE programs. Of particular note is that program managers may want to consider requiring/ recommending field crews be vaccinated against Hepatitis B, particularly if the crews will be accessing waters known to be contaminated with illicit sewage discharges. Program managers should contact local health department officials to explore this issue in more detail prior to making a decision.